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Abstract

A three-dimensional stochastic computer simulation has been developed in order to provide a detailed
understanding of chromatographic separations. In this simulation, the migration of individual molecules is
established through diffusion and convection within a fluid phase that is in contact with a surface. Molecular
interaction and, hence, retention may arise by partitioning into permeable surfaces or by adsorption at solid
surfaces. The molecular distribution and the corresponding zone profile may be examined and characterized by
means of statistical moments at any specified time or spatial position during the simulation. This simulation
provides a powerful and versatile model with which to characterize transport phenomena in complex chromato-

graphic separation systems.

1. Introduction

Much of our current understanding of chroma-
tography has been obtained through the correla-
tion of experimental measurements with theoret-
ical models. The development of more powerful
and comprehensive models is necessary to define
and clarify the current status as well as to guide
future advances in separation science.

A variety of classical models has been used to
describe transport phenomena in chromato-
graphic systems [1-5]. These classical models,
which are developed from macroscopic principles
and properties, yield the cumulative solute zone
profile at a specified time or distance. The
approaches range in complexity from the discrete
plate or ‘tanks-in-series’ model [6-9] to the
solution of detailed mass-balance equations [10-
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16]. A complete and rigorous model of this type
requires the formulation of mathematical equa-
tions (with associated boundary conditions)
which incorporate all physical and chemical pro-
cesses that contribute to solute zone migration
and dispersion within the separation system.
These differential equations generally cannot be
solved analytically in closed form and, thus, are
commonly solved by numerical methods after
simplifying assumptions are invoked. For exam-
ple, in the equilibrium-dispersive model of mass
transport [1-4], the system is considered to be in
equilibrium and the dispersion from all sources is
combined into a single and constant ‘apparent
dispersion coefficient’. In the kinetic models that
allow for departure from equilibrium, the disper-
sion contributions are similarly combined with
subsequent neglect of either the resistance to
mass transfer (reaction—dispersive model) or the
kinetics of adsorption/desorption (transport—dis-
persive model) [10]. As a consequence of these
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simplifying assumptions, the classical models
cannot provide a completely general description
of transport phenomena in chromatographic sys-
tems. Moreover, because of their inherent
macroscopic perspective, these models are in-
adequate to describe transport in systems that
are heterogeneous at the microscopic and molec-
ular levels.

Stochastic models have also been used to
describe the evolution of the solute zone profile
in the time and distance domains [4,17-20]. In
these models, the random migration of a single
molecule is utilized to develop probability dis-
tribution functions based on binomial or Poisson
statistics, from which the cumulative zone profile
can be determined. This approach can be extend-
ed to model heterogeneous separation systems
by incorporating two or more independent con-
tributions to the probability distribution func-
tions [21,22]. Unfortunately, the resulting equa-
tions do not yield to analytical or numerical
solution when all physical and chemical processes
are considered, hence, simplifying assumptions
are necessary. Therefore, as with the classical
models, no comprehensive and completely gener-
al model is available to describe all separation
systems.

Finally, a completely different stochastic ap-
proach has been utilized which, for distinction,
will be called the molecular simulation models.
These simulations follow the trajectories of in-
dividual molecules and range in complexity from
one-dimensional models with finite step size [23-
26] to three-dimensional models with variable
step size [27-30]. In the most rigorous and
comprehensive treatments, the fundamental
equations of motion for diffusion, convection,
and other transport processes are independently
applied to each molecule. In contrast to the
complex differential equations of mass balance,
these equations of motion are relatively simple
and require few, if any, simplifying assumptions.
However, extremely powerful computers are
required in order to model the migration of a
statistically significant number of molecules over
meaningful periods of time or distance. This
limitation has become less severe with the
routine availability of high-speed, high-memory

computers, particularly those with parallel pro-
cessors [31]. In recent years, three-dimensional
molecular simulations have been applied to the
study of flow injection analysis [27,28], field flow
fractionation [29], and capillary zone electropho-
resis [30].

The relationship between these three types of
models may be best understood by extension of
the conceptual analogy presented by McQuarrie
[18]. The classical models of mass transport are
related to classical thermodynamics in much the
same manner that the stochastic models are to
statistical thermodynamics or mechanics. In con-
trast, the molecular simulation approach is di-
rectly analogous to quantum mechanics, where
the simpler models are semi-empirical and the
more complex three-dimensional models tend to
be ab initio methods. This analogy serves to
clarify the advantages and limitations of each
type of model, as well as to indicate its most
appropriate range of applications. If the sepa-
ration system is homogeneous and continuous in
both spatial and temporal domains or, equiva-
lently, can be satisfactorily described by a single
set of average properties, all of these models
must necessarily describe the same reality. In this
case, the simplest classical or stochastic model
that adequately addresses all transport processes
in the system should be utilized. On the other
hand, if the system is heterogeneous or discon-
tinuous in either or both of the spatial and
temporal domains, only the molecular simulation
models are wholly appropriate.

In the present study, we describe the prelimin-
ary development of a three-dimensional molecu-
lar simulation that provides a unified treatment
for gas, supercritical fluid, and liquid chromatog-
raphy. The algorithms describing the transport
phenomena have been implemented in a sequen-
tial manner, such that each may be independent-
ly validated by comparison with classical models.
All physical and chemical parameters that are
routinely used to control these transport phe-
nomena are invoked as intrinsic and independent
variables. Thus, this simulation provides a
powerful and versatile means to examine and
characterize the behavior of complex separation
systems.
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2. Description and validation of computer
simulation

The three-dimensional molecular simulation
program was developed in the FORTRAN 77
programming language and optimized for execu-
tion on an IBM RS/6000 Model 580 computer.
As shown in the flowchart in Fig. 1, this program
incorporates algorithms for the processes of
diffusion, convection, and retention, which are
repeated for each molecule at each time incre-
ment (¢) until the total simulation time (7) is
reached. The simulation may be performed in
Cartesian global coordinates, which is most
appropriate for separations in planar media, or
alternatively in cylindrical global coordinates for
separations in capillary tubes or fibers. Because
of its mathematical simplicity, the latter case will
be described in detail.

2.1. Simulation input

The input parameters required for the simula-
divided into

tion may be three general

FT SMOOTHING
STATISTICAL MOMENTS

ADSORPTION

OUTPUT
INTERVAL?

INCREMENT TOTAL TIME

Fig. 1. Flowchart of the computer simulation program.

Table 1
List of variable simulation parameters

System parameters:

Radius of fluid phase

Length of fluid phase

Viscosity of fluid phase

Mean linear velocity of fluid phase
Depth of surface phase

Pressure

Temperature

NTvTARSFI

Molecular parameters:
Diffusion coefficient
Distribution coefficient
Adsorption energy
Mean desorption time

o

«

m X

Pyl

Computational parameters:
Number of molecules N
Molecular-frame coordinates p, &, 0
Global-frame coordinates:
cylindrical r, 6,z
Cartesian X, Y. 2
Time increment t
Total simulation time T

categories, as shown in Table 1. The system
parameters describe properties of the fluid (mo-
bile phase) and surface (stationary phase), as well
as the spatial dimensions of the separation sys-
tem to be simulated. The molecular parameters
describe attributes of the solute molecules, and
the computational parameters describe certain
constraints that are required for the simulation.
On the basis of these input parameters, an array
is created that contains the properties and
coordinates of each molecule. To initialize the
simulation, the molecules are distributed ran-
domly with a delta, rectangular, or Gaussian
profile of specified variance at a specified mean
distance in the global coordinate frame.

2.2. Simulation output

The program allows the molecular zone profile
to be examined as the distance distribution at
specified simulation times or, correspondingly, as
the time distribution at specified distances. The
statistical moments of the molecular distribution
are calculated in length units for simulations at
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specified times (or in time units at specified
distances). For example, the first statistical mo-
ment or mean distance (z) is determined from:

N
z=N"'2z (1)
i=1

the second statistical moment or variance (o) is
determined from:

02:N—1§(zi_z)z 2)

and the higher-order statistical moments are
determined in a similar manner [32], where z; is
the axial coordinate of an individual molecule
and N is the total number of molecules. These
statistical moments, as well as the chromato-
graphic figures of merit derived therefrom, are
stored in a standard data file at each specified
time (or distance).

In addition to the numerical output parame-
ters, the molecular population is summed in
discrete length (or time) segments and then
smoothed by Fourier transform methods [33] to
provide a continuous zone profile for graphical
display. An example of the molecular distribu-
tion and the corresponding discrete and
smoothed zone profiles is illustrated in Fig. 2.

PR b e
e AR KRR A
gt A TR

30+

MOLECULES

DISTANCE (cm)

Fig. 2. Molecular distribution along the fluid-surface inter-
face (top), together with the segmented and smoothed zone
profiles (bottom).

Because the molecular distribution may be ex-
amined at any time (or distance), these output
routines provide an extensive visual and numeri-
cal record of transport processes throughout the
simulation.

2.3. Diffusion

Molecular diffusion is simulated by using a
three-dimensional extension of the one-dimen-
sional Einstein—Smoluchowski equation [34-36].
If each dimension is fully independent, then the
radial distance p travelled during the time incre-
ment ¢ is given by:

p=(6D 1)!"2 3

where D, represents the binary diffusion coeffi-
cient of the molecule in the fluid or surface
phase, as appropriate. The direction of travel is
subsequently randomized through the spherical
coordinate angles (¢,0). Finally, the coordinate
increments in the molecular frame are used to
calculate the new molecular position in the
global coordinate frame.

To verify the accuracy of the diffusion algo-
rithm, the zone distance and variance for an
ensemble of 750 molecules were monitored as a
function of the simulation time. These results
were compared with theoretical predictions
based on the Einstein equation [34]. As shown in
Fig. 3, excellent agreement is observed for the
range of diffusion coefficients commonly encoun-
tered in gas, supercritical fluid, and liquid chro-
matography (10™' to 107® cm” s ). The average
relative errors for the zone distance and variance
are 0.32% and 2.96%, respectively.

2.4. Convection

Molecular convection in the fluid phase may
be induced by means of a pressure gradient
applied tangentially to the surface phase. Under
these conditions, the radial position r of the
molecule remains constant and the axial distance
z travelled in time increment ¢ is given by:

z=vt “)
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Fig. 3. Validation of the diffusion algorithms by comparison of
the zone distance and variance with theoretical prediction.
Simulation conditions: N =750; t=5.0-107°-1.0-10 " s; R =
200-10"* em; D,=1.0-10"" ecm® 7' (O), 1.0-107? cm® s~
(0), 1.0-10 ecm® s™' (A), 1.0-107* em® s7' (©), 1.0-107°
om’ s (@), 1.0-10° cm® s7' (M), 1.0-1077 cm® s (A),
1.0-107" ecm® s™' (®). Theory (solid line) based on the
Einstein equation [34]: z =0; o° =2D,T.

For pressure-induced flow under fully developed
laminar conditions, the radial velocity profile in
the cylindrical global frame is given by the
Taylor-Aris equation [37,38]:

v=2v1-(%)] ®)

The mean velocity v, may be specified as an
input parameter or may be calculated from the
Hagen~Poiseuille equation [1-3,39]:

_R’P ‘
- 81] L ( )

Vo

where P is the applied pressure, 7 is the viscosity
of the fluid phase, and R and L are the radius
and length, respectively, of the fluid phase in the
cylindrical global frame.

To verify the accuracy of the laminar convec-

tion algorithm, the zone distance and variance
for an ensemble of 750 molecules were moni-
tored as a function of the simulation time. These
results were compared with theoretical predic-
tions based on the Taylor-Aris equation [37,38]
with both diffusion and resistance to mass trans-
fer in the fluid phase. As shown in Fig. 4,
excellent agreement is observed for the range of
linear velocities commonly encountered in gas,
supercritical fluid, and liquid chromatography
(0.001 to 100.0 cm s™'). The average relative
errors for the zone distance and variance are
0.49% and 2.24%, respectively.

2.5. Retention

Molecular interaction is simulated as a parti-
tion process if the surface is permeable (e.g., thin
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Fig. 4. Validation of the convection algorithms for pressure-
induced flow under laminar conditions by comparison of the
zone distance and variance with theoretical prediction. Simu-
lation conditions: N =750; r =5.0-10"°s; R=20.0-10"* cm;
D,;=1.0-10"° em” s™"; v,=0.001 cm s™' (&), 0.01 cm s~
(M), 01cms™" (@®),10cms™' (A), 10.0 cm s~ (O0), 100.0
cm s~ ' (O). Theory (solid line) based on the Taylor-Aris
equation [37,38): z =v,T; o> =2D,T + R*v.T/24D,.
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polymer film or chemically bonded organic lig-
ands) or as an adsorption process if the surface is
solid (e.g., silica or alumina).

For the partition process, the probability of
transport between the fluid and surface phases is
given by:

D 1/2
P .= K(ﬁ) and P, . =1 (7a)
f

or, alternatively:

D 172
P ,=land P _ = K‘1<F‘> (7b)
as shown graphically in Fig. 5. Because the
probabilities P, . and P, must be less than or
equal to unity, the appropriate expressions (Eq.
(7a) or (7b)) may be selected based on knowl-
edge of the distribution coefficient K and the
diffusion coefficients in the fluid and surface
phases, D; and D_, respectively. When a molecule
in the fluid phase encounters the fluid—surface
interface during the simulation, a random num-
ber ¢ between zero and one is selected. If the
selected number is less than or equal to the
probability P, . given by Eq. (7a) or (7b), the
molecule will be transferred to the surface phase.
Otherwise, the molecule will remain in the fluid
phase and will undergo an elastic collision at the
interface. A similar routine is performed when a

0.8+ \

0.6

PROBABILITY

0.2+ N

0.c ——r . S — S
0.01 0.1 1.0 10.0 100.0

DISTRIBUTION COEF-ICIENT

Fig. 5. Probability of transport between fluid and surface
phases (P,_, solid line) and between surface and fluid phases
(P,_,, dashed line) as a function of the distribution coefficient
for equilibrium partition mechanism.

molecule in the surface phase encounters the
interface, except that the random number § is
compared with the probability P, ; given in Eq.
(7a) or (7b). Finally, when a molecule in the fluid
or surface phase encounters a spatial boundary
of the system, an elastic collision is performed.

To verify the accuracy of the retention algo-
rithm for equilibrium partition, the ratio of
molecules in the fluid and surface phases was
monitored as a function of the distribution coeffi-
cient, diffusion coefficients, fluid and surface
phase depths, etc. As shown in Table 2, excellent
agreement is observed between the computer
simulation and theoretical predictions for a wide
range of experimental conditions encountered in
chromatography.

To verify the accuracy of this retention algo-
rithm in combination with the diffusion and
convection algorithms, the zone distance and
variance for an ensemble of 750 molecules were
monitored as a function of the simulation time.
These results were compared with theoretical
predictions based on the extended Golay equa-
tion [13] with diffusion and resistance to mass
transfer in the fluid and surface phases. As
shown in Fig. 6, excellent agreement is observed
for the range of distribution coefficients com-
monly encountered in chromatography (0.01 to
100.0). The average relative errors for the zone
distance and variance are 0.55% and 4.02%,
respectively.

For preliminary simulations of the adsorption
process, the surface is considered as a uniform
distribution of localized lattice sites, each of
equal area and equal energy of interaction with
the molecule. The molar adsorption energy for
simple aliphatic and aromatic molecules on silica
and alumina surfaces is well documented in the
literature [40]. The adsorption energy E is re-
lated to the mean time for desorption 7, in the
following manner [41-43]:

E
R xp <kAkBT0> (8)

where 7, is the vibrational period, typically
10722107 " 5, T, is the absolute temperature, k
is the Boltzmann constant, and k, is the
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Table 2

Verification of the retention algorithm by comparison of the molecular distribution between the fluid and surface phases

R d, K D, D, N,IN, NN, Error
(cm) (cm) (em’s™") (em®s™") Theory* Simulation (%)

20.0-107* 828-107* 0.1 1.0-107° 1.0-107° 0.10 0.10 + 0.01 0.0
20.0-107* 828-107* 0.5 1.0-107° 1.0-107° 0.50 0.49 = 0.01 -2.0
20.0-107* 828-107* 1.0 1.0-107° 1.0-107° 1.00 0.99 +0.01 -1.0
20.0-107* 828-107* 5.0 1.0-107° 1.0-107° 5.00 5.03 = 0.01 0.6
20.0-107° 098-107* 1.0 1.0-107° 1.0-107° 0.10 0.10 = 0.01 0.0
20.0-107* 828-107* 1.0 1.0-10°° 1.0-10°° 1.00 1.00 = 0.01 0.0
20.0-107* 28.98-107* 1.0 1.0-10 ° 1.0-10 ° 5.00 4.97 +0.01 -0.6
40.0-10° 16.57-107"* 1.0 1.0-107° 1.0-107° 1.00 1.01 = 0.01 1.0
60.0-107° 24.85-10 ¢ 1.0 1.0-107° 1.0-107° 1.00 0.98 * 0.01 -20
80.0-107* 33.14-10°¢ 1.0 1.0-107° 1.0-10°° 1.00 0.96 +0.01 —4.0

* Calculated as K(V,/V,), where V, = 7R’L and V.= 7(d’ + 2Rd )L.

DISTANCE  (cm)

Wi

1.0E-02+

1.0E~03+

VARIANCE

1.0E-04 —
5.0 10.0 50.0

TIME  (s)

Fig. 6. Validation of the surface interaction algorithms for
cquilibrium partition by comparison of the zone distance and
variance with theorctical prediction. Simulation conditions:
N=750; t=50-10"" s; R=200-10"" cm; d,=828-10""
em; D,;=1.0-107 em® s™' D, =1.0-10"" em® s v, =0.1
em s K =001 (V), 0.1 (¢), 1.0 (A), 10.0 (O), 100.0 (O).
Theory (solid line) based on the extended Golay equation
[13): z=v,TH{1+k); o =2D,T)+2DAT)+(1+6k+
11&%) R v, Ti24 (1 + kY D, +2kdv.T/3 (1 + k)’D,, where
k = K[(d: +2Rd )IR’].

Avogadro constant. If a molecule encounters the
surface, the probability for adsorption P, is
equal to unity if the site is vacant and zero if it is
occupied [44,45]. The probability for desorption
P, ; is determined in one of the following ways:
(1) a simple random-walk approach in which the
probability is zero when the incremental time is
less than the mean desorption time and is unity
thereafter; and (2) a Poisson distribution for the
probability in which the mean value and standard
deviation are defined by the desorption time [30].
These algorithms may be readily extended to
heterogeneous surfaces that consist of two or
more types of lattice sites having different area
and different energy of interaction with the
molecule [46,47].

3. Applications of computer simulation

Based on the validation studies described
above, the computer simulation accurately
models the diffusion, convection, and retention
processes that occur during chromatographic
separations. Consequently, it may now be ap-
plied with confidence to examine and character-
ize the separation mechanism in greater detail.
Because this simulation monitors the migration
of individual molecules, it provides the oppor-
tunity to perform simulated experiments and to
make observations that may not be possible in a
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real chromatographic system. For example,
kinetic rate constants for the separation process
may be directly determined and their depen-
dence upon the simulation variables may be
readily established. In addition, retention and
dispersion arising in regions of discrete spatial
and temporal transition may be examined. The
preliminary studies described herein will focus
on characterization of the partition mechanism
under conditions representative of liquid chro-
matography, with later studies to be focused on
the adsorption mechanism [48]. Once these re-
tention mechanisms have been individually ex-
amined and characterized, the simulation can
then be applied to elucidate the composite parti-
tion—adsorption mechanism.

3.1. Determination of kinetic rate constants

In the partition process, the solute X is distrib-
uted between the fluid and surface phases by a
reversible mechanism:

X, =X, )]

k

s—f

where k; . and k_, are the first-order rate
constants. When the system is in equilibrium, the
ratio of the number of solute molecules in the
fluid (N;) and surface (N,) phases defines the
distribution coefficient:

K‘/S_NS_ kf—s
Vi ~ N, k_,

s

10)

which is adjusted for the relative volumes of the
fluid (V;) and surface (V;) phases. Prior to equilib-
rium, however, the distribution of solute mole-
cules can be described by a kinetic model of
reversible reactions [43,49]. Under these con-
ditions, the net rate of change in the number of
molecules in the fluid phase is:

) _ Nk
dT —  “t-s ¢t sAst (11)

If all molecules initially reside in the fluid phase,
the solution of Eq. (11) is given by:

(No)r _ ko + ki exp[— Tk,  +k )]
(Nf)O kf—s + ks—f

(12)

where (N;), and (N;); are the number of mole-
cules remaining in the fluid phase at time 0 and
T, respectively. Hence, the distribution of mole-
cules between the fluid and surface phases can be
predicted at any time by using Eq. (12} if the rate
constants are known. Conversely, the rate con-
stants can be predicted if the distribution is
known as a function of time. Whereas neither of
these cases is amenable to direct experimental
measurement in a chromatographic system, both
may be readily examined by means of the three-
dimensional molecular simulation.

An example of the latter case is illustrated in
Fig. 7, where the relative number of molecules in
the fluid phase is shown as a function of the
simulation time. From nonlinear regression anal-
ysis of the simulation data in the center curve
(K=2.0, V;/V, =2.0), the rate constants k; ; and
k. . are determined to be 837 and 8.56 s ',
respectively. Although the probability of molecu-
lar transfer from the fluid to the surface phase
(P;_s = 0.63) is less than that from surface to fluid
(P, = 1.00) according to Eq. (7a), the rate con-
stants are equal because of the commensurately
larger volume of the fluid phase. The ratio of
these rate constants (k,_/k._; =0.98) is in accord
with the ratio of the number of molecules in the
surface and fluid phase after equilibrium has

(ND; / (N,

0.0 T T r T {
0.0 0.2 0.4 0.6 0.8 1.0

TIME (s)

Fig. 7. Deterinination of the rate of solute equilibration from
the relative number of molecules in the fluid phase as a
function of simulation time. Simulation conditions: N = 1000;
t=50-10"° s; R=200-10"" cm; d,=4.49-10"* cm; D, =
1.0-107° cm® s % DS=1.0-1076 cm® 57 v, =00 cm sl
K=10 (4&), 20 (O), 10.0 (O). Solid lines show nonlinear
regression analysis according to Eq. (12).
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been reached (N,/N; = 0.99). Moreover, both the
kinetic and equilibrium descriptions of the mo-
lecular distribution show excellent agreement
with the theoretically expected value (K (V,/V,) =
1.00) from Eq. (10). Upon substitution of these
rate constants into Eq. (11), the principle of
detailed balance reveals that each molecule is
transferred between the fluid and surface phases
an average of 4.2 times per second at equilib-
rium.

The results obtained from other simulations
with varying distribution coefficient, but all other
conditions remaining constant, are summarized
in Fig. 7 and Table 3. For a rapidly reversible
partition mechanism, these rate constants repre-
sent diffusion-limited conditions; i.e., the rate
constant &, . is controlled by diffusional mass
transport in the fluid phase and the rate constant
k,_; by that in the surface phase. Under these
conditions, Fig. 7 illustrates that the number of
molecules in the fluid phase reaches 1 —(1/e) of
its final value after approximately 0.06 s and that
equilibration is virtually complete after 0.30 s.

From these types of simulations, a greatly
improved understanding is derived of the kinetic
processes involved in chromatographic separa-
tions. This understanding is essential if the dis-
persion processes inherent in chromatographic
systems are to be minimized. For example, these
rate constants give a direct indication of the
relative magnitude and importance of the fluid-
and surface-phase mass transfer contributions to
dispersion. The simulation permits facile exami-
nation of the effect of variables such as radius of
the fluid phase, depth of the surface phase,
distribution coefficient, diffusion coefficients,

Table 3

etc.,, on these sources of dispersion. The rate
constants are also necessary to evaluate the
effect of a discrete spatial or temporal transition
on the solute zone profile, as discussed in the
following sections.

3.2. Nonequilibrium during injection and elution
processes

After any rapid change in the physical or
chemical environment, some time is necessary
before equilibrium can be reestablished. In chro-
matographic systems, such nonequilibrium con-
ditions exist to some extent continually as the
solute zone travels along the column [25]. How-
ever, a further departure from equilibrium occurs
specifically upon injection to and elution from
the column. During these processes, the solute
zone encounters a spatially distinct region in
which its retention is abruptly and permanently
altered. This transition may be beneficial for
chromatographic resolution and detection sen-
sitivity if the resultant solute zone is compressed,
or detrimental if the zone is expanded.

In previous studies, a classical steady-state
model was developed to describe nonequilibrium
during the injection [50] and elution [51] pro-
cesses:

z_<R?[1+Ki(Vs/Vf)]>z )
TR+ K, V,v)))

(13)

where o and o are the initial and final variance
of the solute zone during the transition between
regions with radius R; and R;, and solute dis-
tribution coefficient K; and K, respectively. This

Kinetic rate constants &, , and k, , determined by numerical regression analysis of the simulation data shown in Fig. 7 to Eq. (12)
(these rate constants represent conditions of diffusion-limited mass transport)

K VLIV, Ky, k., ki Ik, N, /N,
s7) (]
0.5 2.0 2.87 = 0.06 11.46 = 0.24 0.25 0.25
1.0 2.0 525+0.08 10.46 = 0.17 0.50 0.50
2.0 2.0 8.37x0.14 8.56 £ 0.15 0.98 0.99
5.0 2.0 1329 £0.20 5.34+0.10 2.49 2.56
10.0 2.0 1538 +0.24 3.13+0.07 492 5.04
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steady-state model assumes that the entire solute
zone is influenced simultaneously rather than
progressively by the spatial transition and that no
other sources of dispersion occur in this region.
These assumptions are clearly an over-simplifica-
tion, since dispersion from mass transport pro-
cesses in the cylindrical column must occur as
well. If the column dispersion processes are fully
independent, then the variance may be calcu-
lated by using the classical equations developed
by Taylor and Aris [37,38] for a nonretained
solute or by Golay [13] for a retained solute.
However, because both column dispersion and
nonequilibrium dispersion processes are a func-
tion of the distribution coefficient, these contri-
butions must be considered concurrently. The
three-dimensional molecular simulation permits
a more rigorous and detailed examination of
these injection and elution effects.

In order to accomplish this goal, it is necessary
to modify the simulation program to incorporate
discrete spatial transitions (i.e., discontinuous
functions of a simulation variable, such as dis-
tribution coefficient, that arise at a specified
distance). In this program, time has been chosen
as the independent and discrete variable, where-
as distance is the dependent and continuous
variable. Therefore at each time increment, the
position of each molecule must be determined
before invoking a distance-dependent function
for the distribution coefficient or other variable.
This approach has been successfully employed
for some preliminary simulations of the injection
and elution processes. The chromatographic con-
ditions chosen for these simulations are similar to
those described in Fig. 7 and Table 3, for which
the diffusion-limited rate constants have already
been determined under static conditions. For a
relatively slow linear velocity of 0.1 cm s~ ', the
solute zone will travel only 0.03 ¢cm within the
time required for complete equilibration (vide
supra). Thus, these conditions ensure that steady-
state behavior will be maintained along the
chromatographic column.

Upon injection, the solute zones encounter an
abrupt spatial transition from the nonretained
state (K, = 0.0) to the retained state (K; = 1.0, 2.0,
10.0). The solute zone profiles, together with

their corresponding variances, are evaluated at
five simulation times during this transition (Fig.
8). The initial profile is evaluated in the non-
retentive region and, hence, is identical for all
solute zones. The second through fourth profiles
are assessed during the transition, whereas the
final profile is evaluated when the solute zone is
completely within the retentive region. Because
the average linear velocity of molecules is re-
duced after the transition, the resultant solute
zone is compressed by the nonequilibrium pro-
cess. The extent of compression clearly increases
with the distribution coefficient, as indicated by
the decrease in variance and increase in am-
plitude between the initial and final zone profiles.
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Fig. 8. Solute zone profiles, together with their corresponding
variances (@), during the injection process. Column inlet is at
0.0 cm, as shown in schematic diagram at top. Simulation
conditions: N =500; t=50-10"" s; R=20.0-10"" cm; d, =
449-10"* em; D, =1.0-10"em’*s 'y D, =1.0-10"°cm®s ™
v,=01 cm s} K,—>K,=00-10 (A), 0020 (B),
0.0 10.0 (C).
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The effect of column dispersion processes, which
are also dependent upon distribution coefficient
but serve to increase the variance and decrease
the amplitude, is most evident between the
fourth and fifth zone profiles. The results of these
simulations are summarized and compared with
the classical models in Table 4. It is clear that the
simple steady-state model in Eq. (13) exaggerates
the compression effect of injection nonequilib-
rium and significantly underestimates the final
variance. When column dispersion processes are
included, the Taylor—Aris equation [37,38] for a
nonretained solute underestimates the variance
whereas the extended Golay equation [13] for a
retained solute overestimates the variance.

The complementary elution effect is shown in
Fig. 9, where the solute zones encounter an
abrupt spatial transition from the retained state
(K, =1.0, 2.0, 10.0) to the nonretained state (K, =
0.0). The initial profile is evaluated in the reten-

Table 4

tive region, the second through fourth profiles
during the transition, and the final profile in the
nonretentive region. Because the average linear
velocity of molecules increases after the transi-
tion, the resultant solute zone is expanded by the
nonequilibrium process. The extent of expansion
increases dramatically with the distribution co-
efficient, as revealed by the change in variance
and amplitude between the initial and final
profiles. The results of these simulations are
summarized and compared with the classical
models in Table 4. It is evident that the simple
steady-state model in Eq. (13) underestimates the
expansion effect of elution nonequilibrium, and
neither the Taylor-Aris [37,38] nor the Golay
equation [13] adequately addresses the contribu-
tions from column processes. Because this source
of dispersion is an important contribution to the
general elution problem in chromatography [39],
further investigation is clearly warranted.

Initial and final zone variance arising from nonequilibrium processes during injection (Fig. 8), elution (Fig. 9), and stepwise

gradients (Figs. 10 and 11)

K, K, Vi1V, Simulation model Classical models
Z; z o) of o o o;
(cm) (cm) (cm®) (cm?) (cm™)" {cm®)” (em®)*
0.0 1.0 2.0 —0.30 0.24 993-107° 6.64-107" 441-107" 5.42-107" 712-107°
0.0 2.0 2.0 —0.30 0.18 976-107° 466-107° 2.44-107° 334-10°7° 5.16-107°
0.0 10.0 2.0 —0.30 0.07 1.03-1072 131-107° 2.86-107* 9.77-10°¢ 2.08-107°
1.0 0.0 2.0 —0.30 0.47 9.84-107° 2.88-107° 221-107° 236-107° 2571077
2.0 0.0 20 -0.30 0.61 9.61-107° 5.58-10°° 3.84-10 * 4.01-10°° 4321077
10.0 0.0 20 -0.30 1.83 9.69-107° 5.04-107" 3.49-10"" 3.53-107" 358-107"
10.0 1.0 2.0 0.00 0.32 9.72-107° 391-107° 1.56-107° 2.14-107° -
10.0 2.0 2.0 0.00 0.25 9.53-10°° 6.04-107° 3.43-107° 3.90-107° -
2.0 1.0 2.0 0.00 0.73 1.01-10 * 9.95-107° 4.49-107° 5.85-107° -
1.0 10.0 2.0 0.00 0.78 941-107° 9.18-107° 588-107° 6.03-107° -
2.0 10.0 2.0 0.00 0.43 1.01-10°? 399.107° 2.81-107° 2.88-107° -
1.0 2.0 2.0 0.00 1.08 9.26-10 ° 3.78-1072 2.08-10 ° 22910 ° -

* Calculated by using Eq. (13) or (14) for nonequilibrium dispersion.
" Caleulated by using Eq. (13) or (14) for nonequilibrium dispersion and the Taylor—Aris equation [37,38] for column dispersion

of a nonretained solute.

¢ Calculated by using Eq. (13) or (14) for nonequilibrium dispersion and the extended Golay equation [13] for column dispersion
of a retained solute.
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Fig. 9. Solute zone profiles, together with their corresponding
variances (@), during the elution process. Column outlet is at
0.0 cm, as shown in schematic diagram at top. Simulation
conditions: N=500; t=5.0-10"" s; R=20.0-10"* cm; d, =
449-10" em; D,;=1.0-10"cm’s ', D, =1.0-10 *em®s ;
v,=01 cm s™'; K,—>K,=10-00 (A), 2000 (B),
10.0—0.0 (C).

3.3. Nonequilibrium during stepwise and linear
gradients

It is also desirable to examine dispersion
processes during more complex transitions, such
as a stepwise or linear gradient in velocity,
temperature, or solvent composition. The classi-
cal steady-state model yields the following ex-
pression to describe nonequilibrium dispersion
under such conditions [52,53]:

. (K +K VIV
i “(Ki [1+K, (K/V»]) 7

(14)

for a cylindrical column with constant radius. As
in the previous cases, this model assumes that the

entire solute zone is influenced simultaneously
by the transition and that no other sources of
dispersion occur. The column dispersion pro-
cesses for a nonretained solute may be calculated
by using the Taylor-Aris equation [37,38]. How-
ever, it is not possible to estimate the additional
dispersion for a retained solute by means of the
Golay equation [13] because the spatial position
of the transition is not constant or known,

In order to characterize these stepwise and
linear gradients by means of the three-dimen-
sional molecular simulation, it is necessary to
incorporate two additional types of transitions:
temporal transitions (i.e., discontinuous or con-
tinuous functions of a simulation variable, such
as distribution coefficient, that arise at a specified
time) and nonstationary spatiotemporal transi-
tions (i.e., discontinuous or continuous functions
of the variable that are not fixed in either
distance or time, but migrate at a linear velocity
different from that of the solute zone). Because
time has been chosen as the independent vari-
able for this simulation, temporal transitions may
be achieved directly by invoking a time-depen-
dent function for the variable. In contrast, non-
stationary transitions present a more complicated
and time-consuming computational problem
because, at each time increment, the position of
cach molecule as well as that of the transition
itself must be determined before invoking a
distance-dependent function for the variable.
Some preliminary results are described below in
which discontinuous functions of the distribution
coefficient are considered as nonstationary trans-
itions. These simulations are representative of
practical conditions such as injection of a solute
in a solvent other than the fluid phase, as well as
stepwise gradients in composition of the fluid
phase.

The simulation conditions are similar to those
described in Fig. 7 and Table 3, for which the
diffusion-limited rate constants have already
been determined. As noted previously, steady-
state behavior will be maintained under these
conditions at a linear velocity of 0.1 cm s™'. The
first sequence of simulations, shown in Fig. 10, is
representative of a stepwise increase in solvent
strength. During this transition, the distribution
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Fig. 10. Solute zone profiles, together with their corre-
sponding variances (@), during a stepwise increase in solvent
strength. Simulation conditions: N =500; t=5.0-10"*s; R =
200-107" cm; d,=449-107 cm; D, =1.0-10"" cm® s7;
D,=10-10"°"cm’s ™, v,=01 cm s™}; K,—> K, =100—>1.0
(A), 10.0—2.0 (B), 2.0—1.0 (C).

coefficient of the solute decreases (K,—K;=
10.0— 1.0, 10.0— 2.0, 2.0— 1.0), whereas that of
the solvent remains constant (0.0). The solute
zone profiles, together with their corresponding
variances, are evaluated periodically throughout
the transition. In the initial profile, the transition
between solvent zones is located at the rear
boundary of the solute zone. Because the solvent
zone migrates at a higher linear velocity, it
gradually surpasses the solute zone so that, in the
final profile, the transition is located at the front
boundary of the solute zone. Thus, in contrast to
discrete temporal transitions where the entire
solute zone is influenced simultaneously, and
discrete spatial transitions where the solute zone
is influenced progressively from the front bound-
ary, in most practical applications of nonstation-
ary transitions, the solute zone is influenced
progressively from the rear boundary. The aver-

age linear velocity of molecules increases after
the transition to higher solvent strength, hence
the resultant solute zone is compressed by the
nonequilibrium process. Several important con-
clusions are evident in this sequence of simula-
tions. First, the greater the ratio of distribution
coefficients in the initial and final solvents, the
greater the extent of solute zone compression. If
the distribution coefficient changes too signifi-
cantly, however, the solute zone profile may
exhibit severe distortion and asymmetry during
the transition (Fig. 10A and 10B, second and
third profiles). Finally, the greater the magnitude
of the initial and final distribution coefficients,
the more rapidly the solute zone is surpassed by
the solvent zone. The results of these simulations
are summarized and compared with the classical
models in Table 4.

The complementary case, shown in Fig. 11, is
representative of a stepwise decrease in solvent
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Fig. 11. Solute zone profiles, together with their corre-
sponding variances (@), during a stepwise decrease in solvent
strength. Simulation conditions: N = 500; r =5.0- 107 s; R=
200-107" cm; d,=449-107* D,;=1.0-10" cm’ s™'; D, =
1.0-10° em® s v, =01 cm s7'; K,—> K, =1.0-10.0 (A),
20— 10.0 (B). 1.0—2.0 (C).
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strength. During this transition, the distribution
coefficient of the solute increases (K;,— K;=
1.0—-10.0, 2.0—10.0, 1.0— 2.0), whereas that of
the solvent remains constant (0.0). Because the
average linear velocity of molecules decreases
after the transition, the resultant solute zone is
expanded by the nonequilibrium process. The
smaller the ratio of distribution coefficients in the
initial and final solvents, the greater the extent of
solute zone expansion. Again, if the distribution
coefficient changes too significantly, the solute
zone profile may exhibit severe distortion and
asymmetry during the transition (Fig. 11A and
11B, third and fourth profiles). The results of
these simulations are summarized and compared
with the classical models in Table 4.

These simulations provide additional insight
into the injection process when a solvent other
than the fluid phase is employed. If the solute is
injected in a solvent that is weaker than the fluid
phase (K, > K,), the solute zone is compressed to
a greater extent during the spatial transition from
the nonretentive to retentive regions at the
column inlet. Then, as the injection solvent
surpasses the solute zone and is replaced by the
fluid phase, the zone is further compressed. The
opposite effect is observed when the solute is
injected in a solvent that is stronger than the
fluid phase (K;<K,). During the spatial transi-
tion, the solute zone is compressed to a lesser
extent; then, as the injection solvent is replaced
by the fluid phase, the solute zone is further
expanded. Thus, these two independent transi-
tion processes act in a cooperative manner to
decrease or increase the solute zone variance
during the injection process.

4. Conclusions

The three-dimensional molecular simulation
program incorporates the processes of diffusion,
convection, and retention by a partition or ad-
sorption mechanism. The individual algorithms
have been validated under a wide variety of
representative conditions for gas, supercritical
fluid, and liquid chromatography. Because of the
modular nature of this program, the algorithms
may be simply and rapidly modified to allow

additional mass transport processes to be ex-
amined.

Because this simulation program monitors the
migration of individual molecules, it provides the
opportunity to perform hypothetical experiments
and to make observations that may not be
possible in a real chromatographic system. For
example, the kinetic rate constants may be di-
rectly determined and their dependence upon
variables such as the distribution coefficient,
column radius, and diffusion coefficients may be
readily established. In addition, retention and
dispersion processes may be examined in regions
of discrete spatial transition (e.g.. injection and
elution) as well as discrete or continuous tempo-
ral transitions (e.g., velocity, temperature, or
solvent composition gradient).

One of the most significant features of the
simulation program is that molecular migration is
monitored in three-dimensional space. As a
consequence of this spatial resolution, mass
transport processes can be easily studied on
surfaces with physical and chemical heterogene-
ity at the molecular level. In addition, mono- or
multilayer systems as well as systems with do-
mains of microscopic or macroscopic architecture
can be readily accommodated. Thus, this simula-
tion provides a powerful means to examine and
characterize the kinetic and equilibrium behavior
of complex separation systems.
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